English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biotechnic and Histochemistry 2017

Enamel matrix proteins regulate hypoxia-induced cellular biobehavior and osteogenic differentiation in human periodontal ligament cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Z C Song
S Li
J C Dong
M J Sun
X L Zhang
R Shu

Keywords

Abstract

Hypoxia is a crucial microenvironment for inflamed periodontal tissue and periodontal wound healing. Enamel matrix proteins (EMPs) potentially can promote the formation of new periodontium. The effects of EMPs on periodontal ligament cells under hypoxia, however, remain unclear. We investigated the effects of EMPs on cellular biobehavior and osteogenic differentiation of human periodontal ligament cells (hPDLCs) under hypoxia. Under cobalt chloride (CoCl2)-induced hypoxia, cellular biobehavior of hPDLCs, including proliferation, attachment, spreading, and migration with or without EMPs, was evaluated by 3-(4, 5-dimethylthiazol- 2-yl)-2, 5-diphenyl tetrazolium bromide (MTT), cell counting, spreading area measurement and wound scratch assay. The osteogenic activity of hPDLCs was assessed using alkaline phosphatase (ALP) and alizarin red S staining (ARS). The expressions of osteogenic genes including runt related transcription factor 2 (Runx2), ALP, osteocalcin (OCN) and collagen type I (Col-I) were detected using real time quantitative PCR, western blot and immunocytochemistry assays. The biobehavior and osteogenic differentiation of hPDLCs were inhibited significantly under hypoxia. EMPs have no effect on cell proliferation under mimicked hypoxia. EMPs partly reversed the inhibitory effects of hypoxia, however, for other cellular biobehavior including attachment, spreading and migration, and markedly up-regulated osteogenic differentiation activities including ALP, mineralization ability and the expressions of osteogenic genes such as Runx2, ALP, osteocalcin, and collagen type I in hPDLCs under hypoxia. EMPs attenuate the hypoxic injury to cellular biobehavior and osteogenic differentiation in hPDLCs under hypoxia.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge