English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Frontiers in Chemistry 2019

Enantiospecific Synthesis, Chiral Separation, and Biological Activity of Four Indazole-3-Carboxamide-Type Synthetic Cannabinoid Receptor Agonists and Their Detection in Seized Drug Samples.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Lysbeth Antonides
Annelies Cannaert
Caitlyn Norman
Loelia Vives
Aidan Harrison
Andrew Costello
Niamh Daeid
Christophe Stove
Oliver Sutcliffe
Craig McKenzie

Keywords

Abstract

Synthetic cannabinoid receptor agonists (SCRAs) have been the largest group of illicit psychoactive substances reported to international monitoring and early warning systems for many years. Carboxamide-type SCRAs are amongst the most prevalent and potent. Enantiospecific synthesis and characterization of four indazole-3-carboxamides, AMB-FUBINACA, AB-FUBINACA, 5F-MDMB-PINACA (5F-ADB), and AB-CHMINACA is reported. The interactions of the compounds with CB1 and CB2 receptors were investigated using a G-protein coupled receptor (GPCR) activation assay based on functional complementation of a split NanoLuc luciferase and EC50 (a measure of potency) and Emax (a measure of efficacy) values determined. All compounds demonstrated higher potency at the CB2 receptor than at the CB1 receptor and (S)-enantiomers had an enhanced potency to both receptors over the (R)-enantiomers. The relative potency of the enantiomers to the CB2 receptor is affected by structural features. The difference was more pronounced for compounds with an amine moiety (AB-FUBINACA and AB-CHMINACA) than those with an ester moiety (AMB-FUBINACA and 5F-MDMB-PINACA). An HPLC method was developed to determine the prevalence of (R)-enantiomers in seized samples. Lux® Amylose-1 [Amylose tris(3,5-dimethylphenylcarbamate)] has the greatest selectivity for the SCRAs with a terminal methyl ester moiety and a Lux® i-Cellulose-5 column for SCRAs with a terminal amide moiety. Optimized isocratic separation methods yielded enantiomer resolution values (Rs) ≥ 1.99. Achiral GC-MS analysis of seized herbal materials (n = 16), found 5F-MDMB-PINACA (<1.0-91.5 mg/g herbal material) and AMB-FUBINACA (15.5-58.5 mg/g herbal material), respectively. EMB-FUBINACA, AMB-CHMICA, 5F-ADB-PINACA isomer 2, and ADB-CHMINACA were also tentatively identified. Analysis using chiral chromatography coupled to photodiode array and quadrupole time of flight mass spectrometry (chiral HPLC-PDA-QToF-MS/MS) confirmed that the (S)-enantiomer predominated in all samples (93.6-99.3% (S)-enantiomer). Small but significant differences in synthesis precursor enantiopurity may provide significant differences between synthesis batches or suppliers and warrants further study. A method to compare potency between samples containing different SCRAs at varying concentrations was developed and applied in this small preliminary study. A 10-fold difference in the "intrinsic" potency of samples in the study was noted. With the known heterogeneity of SCRA infused materials, the approach provides a simplified method for assessing and communicating the risk of their use.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge