English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Pharmacology and Experimental Therapeutics 2007-Sep

Endocannabinoid enhancement protects against kainic acid-induced seizures and associated brain damage.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
David A Karanian
Sanjida L Karim
JodiAnne T Wood
John S Williams
Sonyuan Lin
Alexandros Makriyannis
Ben A Bahr

Keywords

Abstract

Endocannabinoids are released in response to pathogenic insults, and inhibitors of endocannabinoid inactivation enhance such on-demand responses that promote cellular protection. Here, AM374 (palmitylsulfonyl fluoride), an irreversible inhibitor of fatty acid amide hydrolase (FAAH), was injected i.p. into rats to test for endocannabinoid enhancement. AM374 caused a prolonged elevation of anandamide levels in several brain regions, including the hippocampus, and resulted in rapid activation of the extracellular signal regulated-kinase/mitogen-activated protein kinase pathway that has been linked to survival. To evaluate the neuroprotective nature of the FAAH inhibitor, we tested AM374 in a seizure model involving rats insulted with kainic acid (KA). AM374 was injected immediately after KA administration, and seizure scores were significantly reduced throughout a 4-h observation period. The KA-induced seizures were associated with calpain-mediated cytoskeletal breakdown, reductions in synaptic markers, and loss of CA1 hippocampal neurons. FAAH inhibition protected against the excitotoxic damage and neuronal loss assessed 48 h postinsult. AM374 also preserved pre- and postsynaptic markers to levels comparable with those found in noninsulted animals, and the synaptic marker preservation strongly correlated with reduced seizure scores. With regard to behavioral deficits in the excitotoxic rats, AM374 produced nearly complete functional protection, significantly improving balance and coordination across different behavioral paradigms. These data indicate that AM374 crosses the blood-brain barrier, enhances endocannabinoid responses in key neuronal circuitries, and protects the brain against excitotoxic damage.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge