English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Proceedings of the National Academy of Sciences of the United States of America 1990-Oct

Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semidwarf ga4 and ga5 mutants.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M Talon
M Koornneef
J A Zeevaart

Keywords

Abstract

Twenty gibberellins (GAs) have been identified in extracts from shoots of the Landsberg erecta line of Arabidopsis thaliana by full-scan gas chromatography-mass spectrometry and Kovats retention indices. Eight of them are members of the early-13-hydroxylation pathway (GA53, GA44, GA19, GA17, GA20, GA1, GA29, and GA8), six are members of the early-3-hydroxylation pathway (GA37, GA27, GA36, GA13, GA4, and GA34), and the remaining six are members of the non-3,13-hydroxylation pathway (GA12, GA15, GA24, GA25, GA9, and GA51). Seven of these GAs were quantified in the Landsberg erecta line of Arabidopsis and in the semidwarf ga4 and ga5 mutants by gas chromatography-selected ion monitoring (SIM) using internal standards. The relative levels of the remaining 13 GAs were compared by the use of ion intensities only. In comparison with the Landsberg erecta line, the ga4 mutant had reduced levels of the 3-hydroxy- and 3,13-dihydroxy-GAs, and it accumulated the 13-hydroxy-GAs, except GA53, and the non-3,13-hydroxy-GAs, except GA12. The GA4 gene encodes, therefore, a protein with 3 beta-hydroxylation activity. The ga5 mutant had reduced levels of the C19-GAs, which indicates that the product of the GA5 gene catalyzes the elimination of C-20 at the aldehyde level. The ga5 mutant also had increased levels of certain C20-GAs, which indicates existence of an additional control, possibly hydroxylation of C-20. The growth-response data, as well as the accumulation of GA9 in the ga4 mutant, indicate that GA9 is not active in Arabidopsis, but it must be 3 beta-hydroxylated to GA4 to become bioactive. It is concluded that the reduced levels of the 3 beta-hydroxy-GAs, GA1 and GA4, are the cause of the semidwarf growth habit of both mutants.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge