English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science China Life Sciences 2015-May

Endothelial cells-targeted soluble human Delta-like 4 suppresses both physiological and pathological ocular angiogenesis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
XianChun Yan
ZiYan Yang
Yan Chen
Na Li
Li Wang
GuoRui Dou
Yuan Liu
JuanLi Duan
Lei Feng
SanMing Deng

Keywords

Abstract

Due to its essential roles in angiogenesis, Notch pathway has emerged as an attractive target for the treatment of pathologic angiogenesis. Although both activation and blockage of Notch signal can impede angiogenesis, activation of Notch signal may be more promising because it was shown that long-term Notch signal blockage resulted in vessel neoplasm. However, an in vivo deliverable Notch ligand with highly efficient Notch-activating capacity has not been developed. Among all the Notch ligands, Delta-like4 (Dll4) is specifically involved in angiogenesis. In this study, we generated a novel soluble Notch ligand hD4R, which consists of the Delta-Serrate-Lag-2 fragment of human Dll4 and an arginine-glycine-aspartate (RGD) motif targeting endothelial cells (ECs). We demonstrated that hD4R could bind to ECs through its RGD motif and effectively triggered Notch signaling in ECs. Further, we confirmed that hD4R could suppress angiogenesis in vitro as manifested by network formation assay and sprouting assay. More importantly, hD4R efficiently repressed neonatal retinal angiogenesis and laser-induced choroidal neovascularization (CNV) as well in vivo. In conclusion, we have developed an in vivo deliverable Notch ligand hD4R, which suppresses angiogenesis both in vitro and in vivo, thus providing a new approach to tackle excessive angiogenesis relevant disease such as CNV.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge