English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Cellular Physiology 2018-Jan

Endurance training prevents inflammation and apoptosis in hypothalamic neurons of obese mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Rodolfo Marinho
Vitor R Munõz
Luciana S S Pauli
Eloize C C Ropelle
Leandro P de Moura
Juliana C Moraes
Alexandre Moura-Assis
Dennys E Cintra
Adelino S R da Silva
Eduardo R Ropelle

Keywords

Abstract

This study investigated the effects of exercise training in regulating inflammatory processes, endoplasmic reticulum stress, and apoptosis in hypothalamic neurons of obese mice. Swiss mice were distributed into three groups: Lean mice (Lean), sedentary animals fed a standard diet; obese mice (Obese), sedentary animals fed a high-fat diet (HFD); trained obese mice (T. Obese), animals fed with HFD and concurrently subjected to an endurance training protocol for 8 weeks. In the endurance training protocol, mice ran on a treadmill at 60% of peak workload for 1 hr, 5 days/week for 8 weeks. Twenty-four hours after the last exercise session, the euthanasia was performed. Western blot, quantitative real-time polymerase chain reaction, and terminal deoxynucleotide transferase biotin-dUTP nick end-labeling (TUNEL) techniques were used for the analysis of interest. The results show exercise training increased phosphorylation of leptin signaling pathway proteins (pJAK2/pSTAT3) and reduced the content of tumor necrosis factor α, toll-like receptor 4, suppressor of cytokine signaling 3, protein-tyrosine phosphatase 1B as well as the phosphorylation of IkB kinase in the hypothalamus of T. Obese animals. A reduction of macrophage activation and phosphorylation of eukaryotic initiation factor 2α, and protein kinase RNA-like endoplasmic reticulum kinase (PERK) were also observed in exercised animals. Furthermore, exercise decreased the expression of the proapoptotic protein (PARP1) and increased anti-inflammatory (IL-10) and antiapoptotic (Bcl2) proteins. Using the TUNEL technique, we observed that the exercised animals had lower DNA fragmentation. Finally, physical exercise preserved pro-opiomelanocortin messenger RNA content. In conclusion, exercise training was able to reorganize the control of the energy balance through anti-inflammatory and antiapoptotic responses in hypothalamic tissue of obese mice.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge