English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Pharmaceutics 2013-Jan

Enhanced anticancer potential of encapsulated solid lipid nanoparticles of TPD: a novel triterpenediol from Boswellia serrata.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Shashi Bhushan
Vandita Kakkar
Harish Chandra Pal
Santosh Kumar Guru
Ajay Kumar
D M Mondhe
P R Sharma
Subhash Chandra Taneja
Indu Pal Kaur
Jaswant Singh

Keywords

Abstract

A pentacyclic triterpenediol (TPD) from Boswellia serrata has significant cytotoxic and apoptotic potential in a large number of human cancer cell lines. To enhance its anticancer potential, it was successfully formulated into solid lipid nanoparticles (SLNs) by the microemulsion method with 75% drug entrapment efficiency. SEM and TEM studies indicated that TPD-SLNs were regular, solid, and spherical particles in the range of 100-200 nm, and the system indicated that they were more or less stable upon storing up to six months. TPD loaded SLNs showed significantly higher cytotoxic/antitumor potential than the parent drug. TPD-SLNs have 40-60% higher cytotoxic and apoptotic potential than the parent drug in terms of IC(50), extent of apoptosis, DNA damage, and expression of pro-apoptotic proteins like TNF-R1, cytochrome-c, and PARP cleavage in HL-60 cells. Moreover, blank SLNs did not have any cytotoxic effect on the cancer as well as in normal mouse peritoneal macrophages. The in vivo antitumor potential of TPD-SLNs was significantly higher than that of TPD alone in Sarcoma-180 solid tumor bearing mice. Therefore, SLNs of TPD successfully increased the apoptotic and anticancer potential of TPD at comparable doses (both in vitro and in vivo). This work provides new insight into improvising the therapeutic efficacy of TPD by adopting novel delivery strategies such as solid lipid nanoparticles.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge