English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Microbial Pathogenesis 2018-Dec

Enhanced antimicrobial, antioxidant, in vivo antitumor and in vitro anticancer effects against breast cancer cell line by green synthesized un-doped SnO2 and Co-doped SnO2 nanoparticles from Clerodendrum inerme.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Shakeel Ahmad Khan
Sadia Kanwal
Komal Rizwan
Sammia Shahid

Keywords

Abstract

A novel approach was employed for the synthesis of un-doped tinoxide and Cobalt-doped tinoxide (Co-doped SnO2) nanoparticles (NAPs) by using aqueous extract of Clerodendrum inerme with the help of eco-friendly superficial solution combustion method. Synthesized NAPs were characterized by different spectroscopic techniques and results from XRD, TEM, SEM, EDX and UV-Vis examines confirmed the successful synthesis, crystalline nature and spherical structure of un-doped SnO2 and Co-doped SnO2 NAPs with the average grain size of 30 and 40 nm; and band gap energy of 3.68 and 2.76 eV respectively. Antimicrobial propensity of the synthesized NAPs was determined by agar well assay, SEM, TEM and confocal laser scanning microscopic analysis against various bacterial and fungal strains. Synthesized Co-doped SnO2 NAPs were unveiled the extraordinary antibacterial and antifungal activities against E. coli, B. subtilis, A. niger, A. flavus, and C. albicans with the zone of inhibitions of 30 ± 0.08 mm and 26 ± 0.06 mm, 17 ± 0.04 mm, 23 ± 0.08 mm and 26 ± 0.06 respectively which were also evidenced from SEM, TEM and confocal laser scanning microscopy. In addition, green synthesized Co-doped SnO2 NAPs were demonstrated the substantial antioxidant activity by scavenging DPPH, significant in vitro anticancer and in vivo antitumor activity on breast carcinoma cells (MCF-7) and Ehrlich ascites tumor cell lines respectively than standard. The hemolytic activity disclosed low cytotoxicity of fabricated NAPs (0.89 ± 0.05%) at 5 mg/mL, which was indicated their biocompatibility potential. Hence, the multi-purpose properties of synthesized NAPs presented in the current study can be further deliberated for pharmaceutical and nanomedicine applications.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge