English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 2001-Mar

Enhanced multispecificity of arabidopsis vacuolar multidrug resistance-associated protein-type ATP-binding cassette transporter, AtMRP2.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
G Liu
R Sánchez-Fernández
Z S Li
P A Rea

Keywords

Abstract

Recent investigations have established that Arabidopsis thaliana contains a family of genes encoding ATP-binding cassette transporters belonging to the multidrug resistance-associated protein (MRP) family. So named because of the phenotypes conferred by their animal prototypes, many MRPs are MgATP-energized pumps active in the transport of glutathione (GS) conjugates and other bulky amphipathic anions across membranes. Here we show that Arabidopsis MRP2 (AtMRP2) localizes to the vacuolar membrane fraction from seedlings and is not only competent in the transport of GS conjugates but also glucuronate conjugates after heterologous expression in yeast. Based on the stimulatory action of the model GS conjugate 2,4-dinitrophenyl-GS (DNP-GS) on uptake of the model glucuronide 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG) and vice versa, double-label experiments demonstrating that the two substrates are subject to simultaneous transport by AtMRP2 and preloading experiments suggesting that the effects seen result from cis, not trans, interactions, it is inferred that some GS conjugates and some glucuronides reciprocally activate each other's transport via distinct but coupled binding sites. The results of parallel experiments on AtMRP1 and representative yeast and mammalian MRPs indicate that these properties are specific to AtMRP2. The effects exerted by DNP-GS on AtMRP2 are not, however, common to all GS conjugates and not simulated by oxidized glutathione or reduced glutathione. Decyl-GS, metolachlor-GS, and oxidized glutathione, although competitive with DNP-GS, do not promote E(2)17betaG uptake by AtMRP2. Reduced glutathione, although subject to transport by AtMRP2 and able to markedly promote E(2)17betaG uptake, neither competes with DNP-GS for uptake nor is subject to E(2)17betaG-promoted uptake. A multisite model comprising three or four semi-autonomous transport pathways plus distinct but tightly coupled binding sites is invoked for AtMRP2.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge