English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Oncotarget 2016-Nov

Enhancement of endothelial permeability by free fatty acid through lysosomal cathepsin B-mediated Nlrp3 inflammasome activation.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Lei Wang
Yang Chen
Xiang Li
Youzhi Zhang
Erich Gulbins
Yang Zhang

Keywords

Abstract

Obesity is an important risk factor for exacerbating chronic diseases such as cardiovascular disease and cancer. High serum level of saturated free fatty acids such as palmitate is an important contributor for obesity-induced diseases. Here, we examined the contribution of inflammasome activation in vascular cells to free fatty acid-induced endothelial dysfunction and vascular injury in obesity. Our findings demonstrated that high fat diet-induced impairment of vascular integrity and enhanced vascular permeability in the myocardium in mice were significantly attenuated by Nlrp3 gene deletion. In microvascular endothelial cells (MVECs), palmitate markedly induces Nlrp3 inflammasome complex formation leading to caspase-1 activation and IL1β production. By fluorescence microscopy and flow cytometry, we observed that such palmitate-induced Nlrp3 inflammasome activated was accompanied by a reduction in inter-endothelial tight junction proteins ZO-1/ZO-2. Such palmitate-induced decrease of ZO-1/ZO-2 was also correlated with an increase in the permeability of endothelial monolayers treated with palmitates. Moreover, palmitate-induced alterations in ZO-1/ZO-2 or permeability were significantly reversed by an inflammasome activity inhibitor, YVAD, or a high mobility group box 1 (HMGB1) activity inhibitor glycyrrhizin. Lastly, blockade of cathepsin B with Ca-074Me significantly abolished palmitate-induced activation of Nlrp3 inflammasomes, down-regulation of ZO-1/ZO-2, and enhanced permeability in MVECs or their monolayers. Together, these data strongly suggest that activation of endothelial inflammasomes due to increased free fatty acids produces HMGB1, which disrupts inter-endothelial junctions and increases paracellular permeability of endothelium contributing to early onset of endothelial injury during obesity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge