English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Botany 2013-Sep

Enhancing pterin and para-aminobenzoate content is not sufficient to successfully biofortify potato tubers and Arabidopsis thaliana plants with folate.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Dieter Blancquaert
Sergei Storozhenko
Jeroen Van Daele
Christophe Stove
Richard G F Visser
Willy Lambert
Dominique Van Der Straeten

Keywords

Abstract

Folates are important cofactors in one-carbon metabolism in all living organisms. Since only plants and micro- organisms are capable of biosynthesizing folates, humans depend entirely on their diet as a folate source. Given the low folate content of several staple crop products, folate deficiency affects regions all over the world. Folate biofortification of staple crops through enhancement of pterin and para-aminobenzoate levels, precursors of the folate biosynthesis pathway, was reported to be successful in tomato and rice. This study shows that the same strategy is not sufficient to enhance folate content in potato tubers and Arabidopsis thaliana plants and concludes that other steps in folate biosynthesis and/or metabolism need to be engineered to result in substantial folate accumulation. The findings provide a plausible explanation why, more than half a decade after the proof of concept in rice and tomato, successful folate biofortification of other food crops through enhancement of para-aminobenzoate and pterin content has not been reported thus far. A better understanding of the folate pathway is required in order to determine an engineering strategy that can be generalized to most staple crops.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge