English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Microbial Ecology 2011-May

Environmental constraints underpin the distribution and phylogenetic diversity of nifH in the Yellowstone geothermal complex.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Trinity L Hamilton
Eric S Boyd
John W Peters

Keywords

Abstract

Biological nitrogen fixation is a keystone process in many ecosystems, providing bioavailable forms of fixed nitrogen for members of the community. In the present study, degenerate primers targeting the nitrogenase iron protein-encoding gene (nifH) were designed and employed to investigate the physical and chemical parameters that underpin the distribution and diversity of nifH as a proxy for nitrogen-fixing organisms in the geothermal springs of Yellowstone National Park (YNP), Wyoming. nifH was detected in 57 of the 64 YNP springs examined, which varied in pH from 1.90 to 9.78 and temperature from 16°C to 89°C. This suggested that the distribution of nifH in YNP is widespread and is not constrained by pH and temperature alone. Phylogenetic and statistical analysis of nifH recovered from 13 different geothermal spring environments indicated that the phylogeny exhibits evidence for both geographical and ecological structure. Model selection indicated that the phylogenetic relatedness of nifH assemblages could be best explained by the geographic distance between sampling sites. This suggests that nifH assemblages are dispersal limited with respect to the fragmented nature of the YNP geothermal spring environment. The second highest ranking explanatory variable for predicting the phylogenetic relatedness of nifH assemblages was spring water conductivity (a proxy for salinity), suggesting that salinity may constrain the distribution of nifH lineages in geographically isolated YNP spring ecosystems. In summary, these results indicate a widespread distribution of nifH in YNP springs, and suggest a role for geographical and ecological factors in constraining the distribution of nifH lineages in the YNP geothermal complex.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge