English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chemical Physics 2004-Jan

Environmental swap energy and role of configurational entropy in transfer of small molecules from water into alkanes.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Pavel Smejtek
Robert C Word

Keywords

Abstract

We studied the effect of segmented solvent molecules on the free energy of transfer of small molecules from water into alkanes (hexane, heptane, octane, decane, dodecane, tetradecane, and hexadecane). For these alkanes we measured partition coefficients of benzene, 3-methylindole (3MI), 2,3,4,6-tetrachlorophenol (TeCP), and 2,4,6-tribromophenol (TriBP) at 3, 11, 20, 33 [corrected], and 47 degrees C. For 3MI, TeCP, and TriBP the dependence of free energy of transfer on length of alkane chains was found to be very different from that for benzene. In contrast to benzene, the energy of transfer for 3MI, TeCP, and TriBP was independent of the number of carbons in alkanes. To interpret data, we used the classic Flory-Huggins (FH) theory of concentrated polymer solutions for the alkane phase. For benzene, the measured dependence of energy of transfer on the number of carbons in alkanes agreed well with predictions based on FH model in which the size of alkane segments was obtained from the ratio of molar volumes of alkanes and the solute. We show that for benzene, the energy of transfer can be divided into two components, one called environmental swap energy (ESE), and one representing the contribution of configurational entropy of alkane chains. For 3MI, TeCP, and TriBP the contribution of configurational entropy was not measurable even though the magnitude of the effect predicted from the FH model for short chain alkanes was as much as 20 times greater than experimental uncertainties. From the temperature dependence of ESE we obtained enthalpy and entropy of transfer for benzene, 3MI, TeCP, and TriBP. Experimental results are discussed in terms of a thermodynamic cycle considering creation of cavity, insertion of solute, and activation of solute-medium attractive interactions. Our results suggest that correcting experimental free energy of transfer by Flory-Huggins configurational entropy term is not generally appropriate and cannot be applied indiscriminately.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge