English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1983-May

Enzymes of ureide synthesis in pea and soybean.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
T M Christensen
B U Jochimsen

Keywords

Abstract

Soybean (Glycine max) and pea (Pisum sativum) differ in the transport of fixed nitrogen from nodules to shoots. The dominant nitrogen transport compounds for soybean are ureides, while amides dominate in pea. A possible enzymic basis for this difference was examined.The level of enzymes involved in the formation of the ureides allantoin and allantoic acid from inosine 5'-monophosphate (IMP) was compared in different tissues of pea and soybean. Two enzymes, 5'-nucleotidase and uricase, from soybean nodules were found to be 50- and 25-fold higher, respectively, than the level found in pea nodules. Other purine catabolizing enzymes (purine nucleosidase, xanthine dehydrogenase, and allantoinase) were found to be at the same level in the two species. From comparison of enzyme activities in nodules with those from roots, stems, and leaves, two enzymes were found to be nodule specific, namely uricase and xanthine dehydrogenase. The level of enzymes found in the bacteroids indicated no significant contribution of Rhizobium japonicum purine catabolism in the overall formation of ureides in the soybean nodule. The presence in the nodules of purine nucleosidase and ribokinase activities makes a recirculation of the ribose moiety possible. In concert with phosphoribosylpyrophosphate synthetase, ribose becomes available for a new round of purine de novo synthesis, and thereby ureide formation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge