English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Cancer Research and Clinical Oncology 2010-Aug

(-)-Epigallocatechin-3-gallate induces apoptosis and suppresses proliferation by inhibiting the human Indian Hedgehog pathway in human chondrosarcoma cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Guo-Qing Tang
Tai-Qiang Yan
Wei Guo
Ting-Ting Ren
Chang-Liang Peng
Hui Zhao
Xin-Chang Lu
Fu-Long Zhao
Xiaoguang Han

Keywords

Abstract

OBJECTIVE

Chondrosarcoma is a soft tissue sarcoma with a poor prognosis that is unresponsive to conventional chemotherapy. The regulatory mechanisms for the rapid proliferation of chondrosarcoma cells and the particular aggressiveness of this sarcoma remain poorly understood. In this study, we investigate the effect of epigallocatechin-3-gallate (EGCG) on growth and apoptosis of chondrosarcoma cells.

METHODS

The chondrosarcoma cell lines, SW1353 and CRL-7891, were cultured with and without EGCG. The MTT assay was used to test the cytotoxicity of EGCG. Flow cytometry and DAPI staining were used to observe cell apoptosis caused by EGCG. To explore the effect of EGCG on the Indian Hedgehog signaling pathway and apoptosis-related proteins, RT-PCR and Western blotting were used to detect the expression of PTCH and Gli-1 in the Indian Hedgehog signaling pathway. Meanwhile, expression of Bcl-2, Bax, and caspase-3 were also evaluated by Western blot analysis.

RESULTS

EGCG effectively inhibited cellular proliferation and induced apoptosis of SW1353 and CRL-7891. EGCG inhibited the human Indian Hedgehog pathway, down-regulated PTCH and Gli-1 levels, and induced apoptosis as confirmed by DAPI staining followed by flow cytometry. Protein expression levels of caspase-3 were unchanged in response to EGCG treatment in chondrosarcoma cells; however, the expression levels of Bcl-2 were significantly decreased and the levels of Bax were significantly increased.

CONCLUSIONS

Our findings demonstrate that EGCG is effective for growth inhibition of a chondrosarcoma cell lines in vitro, and suggest that EGCG may be a new therapeutic option for patients with chondrosarcoma.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge