English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Amino Acids 2019-Jun

Epileptic seizures and oxidative stress in a mouse model over-expressing spermine oxidase.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Alessia Leonetti
Giulia Baroli
Emiliano Fratini
Stefano Pietropaoli
Manuela Marcoli
Paolo Mariottini
Manuela Cervelli

Keywords

Abstract

Several studies have demonstrated high polyamine levels in brain diseases such as epilepsy. Epilepsy is the fourth most common neurological disorder and affects people of all ages. Excitotoxic stress has been associated with epilepsy and it is considered one of the main causes of neuronal degeneration and death. The transgenic mouse line Dach-SMOX, with CD1 background, specifically overexpressing spermine oxidase in brain cortex, has been proven to be highly susceptible to epileptic seizures and excitotoxic stress induced by kainic acid. In this study, we analysed the effect of spermine oxidase over-expression in a different epileptic model, pentylenetetrazole. Behavioural evaluations of transgenic mice compared to controls showed a higher susceptibility towards pentylentetrazole. High-performance liquid chromatography analysis of transgenic brain from treated mice revealed altered polyamine content. Immunoistochemical analysis indicated a rise of 8-oxo-7,8-dihydro-2'-deoxyguanosine, demonstrating an increase in oxidative damage, and an augmentation of system x c- as a defence mechanism. This cascade of events can be initially linked to an increase in protein kinase C alpha, as shown by Western blot. This research points out the role of spermine oxidase, as a hydrogen peroxide producer, in the oxidative stress during epilepsy. Moreover, Dach-SMOX susceptibility demonstrated by two different epileptic models strongly indicates this transgenic mouse line as a potential animal model to study epilepsy.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge