English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Asthma and Allergy 2019

Essential oils, asthma, thunderstorms, and plant gases: a prospective study of respiratory response to ambient biogenic volatile organic compounds (BVOCs).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jane Gibbs

Keywords

Abstract

Purpose: Prevailing opinion is that wind-pollinated plants affect asthma negatively and that insect- pollinated ones do not. "Thunderstorm" asthma, too, is attributed to bursting grass pollens. Additional biogenic volatile organic compounds (BVOCs) are identified here. Essential oils' BVOCs are inhaled from plants, oil diffusers, candles, room "fresheners", perfumes, and hygiene products. Claims of BVOC "safety" for sensitive respiratory systems are questioned. Methods: Fourteen volunteers, of mixed-age and gender, with seasonal asthma recorded peak expiratory flow (PEF) and 11 symptom scores. BVOCs were collected on Tenax tubes from ambient air in autumn and spring, as were live flower emissions, before and after a thunderstorm. Gas chromatography-mass spectrometry analysis identified frequently occurring BVOCs. Air spora, meteorological, outdoor air pollution variables, and BVOCs predict respiratory symptoms in univariate linear regression models, seasonally. Results: Increased pinene, camphor, linalool, linalyl acetate, benzaldehyde, and benzoic acid predict respiratory symptoms, including reduced PEF, and increased nasal congestion; day length, atmospheric pressure and temperature predict symptoms in both seasons, differently; other variables predict a range of symptoms (0.0001≤p≤0.05). Thunder predicts different BVOC emissions in spring, compared to autumn (p≤0.05). An uncut Grevillea flower emitted linalool and hexenal before a storm; the latter is also emitted from cut grass. Increased nitrogen oxides and pinene in autumn may combine to form harmful oxidation products. Conclusion: This research supports BVOCs as contributors to seasonal asthma and allergic rhinitis, and "thunderstorm" asthma. Pinene emissions from Myrtaceae species (Eucalyptus, Melaleuca, Leptospermum, Callistemon), Brassicaceae (canola), and conifers, worldwide, may induce respiratory inflammation and maintain it, by inhibiting eosinophilic apoptosis. Widely used essential oil products containing BVOCs, like linalool, are associated here with respiratory symptoms. Lagged responses suggest that users' cognitive associations between exposure and response are unlikely, increasing potential for impaired health for vulnerable children.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge