English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Cancer Research and Clinical Oncology 2007-Mar

Evaluation of different protocols for gene transfer into non-obese diabetes/severe combined immunodeficiency disease mouse repopulating cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Peter Ebeling
P Bach
U Sorg
A Schneider
T Trarbach
D Dilloo
H Hanenberg
S Niesert
S Seeber
T Moritz

Keywords

Abstract

OBJECTIVE

Although gene transfer with retroviral vectors has shown distinct clinical success in defined settings, efficient genetic manipulation of hematopoietic progenitor cells remains a challenge. To address this issue we have evaluated different transduction protocols and retroviral constructs in the non-obese diabetes (NOD)/severe combined immunodeficiency disease (SCID) xenograft model.

METHODS

An extended transduction protocol requiring 144 h of in vitro manipulation was compared to a more conventional protocol requiring 96 h only.

RESULTS

While pretransplantation analysis of cells transduced with a retroviral vector, expressing the enhanced green fluorescent protein (EGFP) marker gene, demonstrated significantly higher overall transduction rates for the extended protocol (33.6 +/- 2.3 vs. 22.1 +/- 3.8%), EGFP expression in CD34+ cells before transplantation (4.0 +/- 0.9 vs. 11.6 +/- 2.5%), engraftment of human cells in NOD/SCID bone marrow 4 weeks after transplantation (4.5 +/- 1.7 vs. 36.5 +/- 9.4%) and EGFP expression in these cells (0 +/- 0 vs. 11.3 +/- 2.8%) were significantly impaired. When the 96 h protocol was used in combination with the spleen focus forming virus (SFFV)/murine embryonic stem cell (MESV) hybrid vector SFbeta11-EGFP, high transduction rates for CD45+ (41.0 +/- 5.3%) and CD34+ (38.5 +/- 3.7%) cells prior to transplantation, as well as efficient human cell engraftment in NOD/SCID mice 4 weeks after transplantation (32.4 +/- 3.5%), was detected. Transgene expression was observed in B-lymphoid (15.9 +/- 2.0%), myeloid (36.5 +/- 3.5%) and CD34+ cells (10.1 +/- 1.5%).

CONCLUSIONS

Our data show that CD34+ cells maintained in cytokines for multiple days may differentiate and loose their capacity to contribute to the haematological reconstitution of NOD/SCID mice. In addition, the SFFV/MESV hybrid vector SFbeta11-EGFP allows efficient transduction of and gene expression in haematopoietic progenitor cells.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge