English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Environmental Contamination and Toxicology 2012-Oct

Evaluation of fetal skeletal malformations in deoxynivalenol-treated mice using microarray analysis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yinghui Zhao
Xiaoming Zhu
Huihui Wu
Dongming Zhuang
Guangfu Yu
Xiaoxia Li
Feng Li
Ailian Yu

Keywords

Abstract

Deoxynivalenol (DON [vomitoxin]), one of trichothecene mycotoxins produced by the fungus Fusarium, is commonly detected in cereal foods across the world. DON induces diverse toxic effects in humans and animals, including emesis and diarrhea, anorexia, and immunotoxicity, and impaired maternal reproduction and fetal development. Recently, the teratogenic potential of DON has been shown and has received much attention. DON can cause various skeletal deformities in fetuses, but the underlying mechanisms have not yet been fully examined. In this study, fetal skeletal malformations in DON-treated maternal mice were thoroughly investigated using microarray assay. The results showed that DON administration caused various skeletal defects in fetuses, including misaligned or fused sternebrae and vertebrae, divided or fused ribs and polydactyly, hemivertebrae, short toes, and tail anomalies. Microarray analysis showed that 282 genes, including 148 downregulated and 134 upregulated genes, were abnormally expressed in fetal vertebral bones after maternal DON exposure. These identified genes can be classified into several categories: skeletal development, carcinogenesis, nervous disorders, sperm development and embryogenesis, and inflammation. Of these, 6 genes, mostly related to bone development, were intentionally selected for further validation using real-time reverse transcription-Polymerase Chain Reaction (RT-PCR). It was confirmed that the mRNA expression of 4 genes, i.e., fibrillin-1, Col9A2, 3'-phosphoadenosine 5'-phosphosulfate synthase 2, and Pax1, was upregulated significantly by DON administration, whereas that of 2 other genes, Runx2 and parathyroid hormone-like hormone, was downregulated significantly. Taken together, the results of our study suggest that altered expression of these 6 genes plays a critical role in fetal skeletal deformities induced by DON and thus they are worthy of further investigation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge