English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Food and Function 2018-Nov

Evaluation of the neuroprotective effect of EGCG: a potential mechanism of mitochondrial dysfunction and mitochondrial dynamics after subarachnoid hemorrhage.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ying Chen
Jianjun Chen
Xiaoxue Sun
Xiaoxiao Shi
Lei Wang
Liyong Huang
Wenke Zhou

Keywords

Abstract

(-)-Epigallocatechin-3-gallate (EGCG), the main bioactive component of tea catechins, exhibits broad-spectrum health efficacy against mitochondrial damage after subarachnoid hemorrhage (SAH). The mechanisms, however, are largely unknown. Here, the ability of EGCG to rescue mitochondrial dysfunction and mitochondrial dynamics following the inhibition of cell death was investigated by using in vitro and in vivo SAH models. EGCG blocked the cytosolic channel ([Ca2+])i influx via voltage-gated calcium channels (VGCCs), which induced mitochondrial dysfunction, including mitochondrial membrane potential depolarization and reactive oxygen species (ROS) release. As expected, EGCG ameliorated oxyhemoglobin (OxyHb)-induced impairment of mitochondrial dynamics by regulating the expression of Drp1, Fis1, OPA1, Mfn1, and Mfn2. As a result, EGCG restored the increases in fragmented mitochondria and the mtDNA copy number in the OxyHb group to almost the normal level after SAH. In addition, the normal autophagic flux induced by EGCG at both the initiation and formation stages regulated Atg5 and Beclin-1 after SAH for the timely elimination of damaged mitochondria. In the end, EGCG increased the neurological score by decreasing cell death through the cyt c-mediated intrinsic apoptotic pathway. The results revealed the mechanisms behind the neuroprotective effects of EGCG via inhibition of the overloaded [Ca2+]i-induced mitochondrial dysfunction and the imbalanced mitochondrial fusion and fission cycle. Therefore, the simultaneous inhibition and timely elimination of damaged mitochondria could determine the therapeutic effect of EGCG.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge