English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Cellular Biochemistry 1993-Sep

Evidence against a role for alkaline phosphatase in the dephosphorylation of plasma membrane proteins: hypophosphatasia fibroblast study.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
K N Fedde
M P Michel
M P Whyte

Keywords

Abstract

A major impasse to understanding the physiologic role(s) of alkaline phosphatase (ALP) is uncertainty as to its natural substrates. Various in vitro studies have led other investigators to suggest that ALP functions as a plasma membrane phosphoprotein phosphatase, consistent with our demonstration of ecto-topography of ALP in a variety of cell types. Thus, we compared the phosphorylation of plasma membrane proteins from control fibroblasts to those from profoundly ALP-deficient fibroblasts of hypophosphatasia patients. Fibroblasts from 3 controls and 3 hypophosphatasia patients (ALP activity < 4% of control) were biosynthetically labeled with 32Pi for 2 h. 32P incorporation into total trichloroacetic acid (TCA)-precipitable material was not significantly different in control and patient cells. Plasma membranes were prepared from these cells by hypotonic shock, solubilized, and subjected to two-dimensional (2-D) gel electrophoretic separation. Video densitometric analysis of silver-stained 2-D gels failed to reveal any consistent difference in the protein profile between patient vs. control fibroblasts (i.e., unique species, altered pls, or increased abundance). Autoradiography of individual 2-D gels demonstrated 63 plasma membrane phosphoproteins with molecular weights ranging from 15 to 152 kDa and predominantly acidic pls. Although several of these phosphoproteins appeared to have had donor-specific labeling, none was unique or especially abundant in the hypophosphatasia group. Thus, in ALP-deficient fibroblasts, normal incorporation of 32P into total cellular protein and into all identifiable plasma membrane phosphoproteins indicates that ALP does not modulate the phosphorylation of plasma membrane proteins.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge