English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant signaling & behavior 2009-Sep

Evidence for a role of hexokinases as conserved glucose sensors in both monocot and dicot plant species.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jung-Il Cho
Nayeon Ryoo
Tae-Ryong Hahn
Jong-Seong Jeon

Keywords

Abstract

The role of the hexokinases (HXKs) as glucose (Glc) sensors has been mainly demonstrated for Arabidopsis (Arabidopsis thaliana) HXK1 (AtHXK1) but has yet to be shown in other plant species. In our recent publication, we reported that two rice (Oryza sativa) HXKs, OsHXK5 and OsHXK6, also function as Glc sensors. These two enzymes harbor both mitochondrial targeting peptides (mTPs) and nuclear localization signals (NLSs), and we confirmed their dual-targeting ability to nuclei and mitochondria using GFP fusion experiments. Consistently, it has been previously known that AtHXK1 is predominantly associated with mitochondria but is also present in nuclei in vivo at appreciable levels. Notably, the expression of OsHXK5, OsHXK6, or their catalytically inactive mutant alleles complemented the Arabidopsis glucose insensitive2 (gin2) mutant. In addition, transgenic rice plants overexpressing OsHXK5 or OsHXK6 exhibited hypersensitive plant growth retardation and enhanced repression of the Rubisco small subunit (RbcS) gene in response to glucose treatment. Our results thus provided evidence that OsHXK5 and OsHXK6 can function as glucose sensors in rice. Hence, the available current data suggest that the role of the HXKs as Glc sensors may be conserved in both monocot and dicot plant species, and that the nuclear localization of AtHXK1, OsHXK5 and OsHXK6 may be critical for Glc sensing and signaling.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge