English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 2004-Nov

Evidence for and characterization of Ca2+ binding to the catalytic region of Arabidopsis thaliana phospholipase Dbeta.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Kirk Pappan
Li Zheng
Ramaswamy Krishnamoorthi
Xuemin Wang

Keywords

Abstract

Most types of plant phospholipase D (PLD) require Ca(2+) for activity, but how Ca(2+) affects PLD activity is not well understood. We reported previously that Ca(2+) binds to the regulatory C2 domain that occurs in the N terminus of the Ca(2+)-requiring PLDs. Using Arabidopsis thaliana PLDbeta and C2-deleted PLDbeta (PLDbetacat), we now show that Ca(2+) also interacts with the catalytic regions of PLD. PLDbetacat exhibited Ca(2+)-dependent activity, was much less active, and required a higher level of Ca(2+) than the full-length PLDbeta. Ca(2+) binding of the proteins was stimulated by phospholipids; phosphatidylserine was the most effective among those tested. Scatchard plot analysis of Ca(2+) binding data yielded an estimate of 3.6 high affinity (K(d) = 29 mum) binding sites on PLDbeta. The Ca(2+)-PLDbetacat interaction increased the affinity of the protein for the activator, phosphatidylinositol 4,5-bisphosphate, but not for the substrate, phosphatidylcholine. This is in contrast to the effect of Ca(2+) binding to the C2 domain, which stimulates phosphatidylcholine binding but inhibits phosphatidylinositol 4,5-bisphosphate binding of the domain. These results demonstrate the contrasting and complementary effects of the Ca(2+)- and lipid-binding properties of the C2 and catalytic domains of plant PLD and provide insight into the mechanism by which Ca(2+) regulates PLD activity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge