English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Pharmacology and Experimental Therapeutics 2008-Apr

Evidence for the role of mitogen-activated protein kinase signaling pathways in the development of spinal cord injury.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Tiziana Genovese
Emanuela Esposito
Emanuela Mazzon
Carmelo Muià
Rosanna Di Paola
Rosaria Meli
Placido Bramanti
Salvatore Cuzzocrea

Keywords

Abstract

Mitogen-activated protein kinase (MAPK) signaling pathways involve two closely related MAPKs, known as extracellular signal-regulated kinase (ERK)1 and ERK2. The aim of the present study was to evaluate the contribution of MAPK3/MAPK1 in the secondary damage in experimental spinal cord injury (SCI) in mice. To this purpose, we used 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059), which is an inhibitor of MAPK3/MAPK1. Spinal cord trauma was induced by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy. SCI in mice resulted in severe trauma characterized by edema, neutrophil infiltration, and production of inflammatory mediators, tissue damage, and apoptosis. PD98059 treatment (10 mg/kg i.p.) at 1 and 6 h after the SCI significantly reduced 1) the degree of spinal cord inflammation and tissue injury (histological score), 2) neutrophil infiltration (myeloperoxidase activity), 3) nitrotyrosine formation, 4) proinflammatory cytokines expression, 5) nuclear factor-kappaB activation, 6) phospho-ERK1/2 expression, and 6) apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, Fas ligand, Bax, and Bcl-2 expression). Moreover, PD98059 significantly ameliorated the recovery of limb function (evaluated by motor recovery score) in a dose-dependent manner. Taken together, our results clearly demonstrate that PD98059 treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge