English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Insect Biochemistry and Molecular Biology

Evidence for two distinct members of the amylase gene family in the yellow fever mosquito, Aedes aegypti.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
G L Grossman
Y Campos
D W Severson
A A James

Keywords

Abstract

Genomic DNA fragments encoding a salivary gland-specific alpha-amylase gene, Amylase I (Amy I), and an additional amylase, Amylase II (AmyII) of the yellow fever mosquito, Aedes aegypti, were isolated and characterized. Two independently isolated DNA fragments, G34-F and G34-14A, encode polymorphic alleles of Amy I. A 3.2 kilobase (kb) EcoR I fragment of G34-F, F2, has been sequenced in its entirety and contains 832 base pairs (bp) of the 5'-end, non-coding and putative promoter regions that are adjacent to 2.4 kb of the Amy I coding region. One intron, 59 bp in length, is found towards the 3'-end of the clone. A third genomic clone, 3A, corresponding to Amy II, was sequenced and shown not to contain the primary DNA sequence that encodes the 260 amino acid region that uniquely characterizes the amino terminal end of the Amy I product. Amy I was assigned by restriction fragment length polymorphism (RFLP) mapping to chromosome 2 (23.0 cM) and Amy II to chromosome 1 (44.0 cM). Amy I and Amy II are highly polymorphic and there may be multiple linked copies at each locus. Comparisons between Amy I and Amy II are presented for the putative promoter and conceptual translation products. The identification of two distinct amylase genes and their separate linkage assignments provides evidence for a multigene family of alpha-amylases in Ae. aegypti.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge