English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology 2019-Jan

Expression patterns and ligand binding characterization of Plus-C odorant-binding protein 14 from Adelphocoris lineolatus (Goeze).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Liang Sun
Yu Li
Ziding Zhang
Huawei Guo
Qiang Xiao
Qian Wang
Yongjun Zhang

Keywords

Abstract

Odorant-binding proteins (OBPs) can bind and transport hydrophobic odorants across the sensillum lymph to the olfactory receptors (ORs) and play crucial roles in insect chemosensory systems. Although the ligand spectra of classical OBPs have been extensively characterized, little is known about OBPs in the Plus-C subgroup. Here, we focus on AlinOBP14, a Plus-C OBP from the hemipteran mirid bug pest Adelphocoris lineolatus (Goeze). Quantitative real-time PCR experiments suggest that AlinOBP14 is ubiquitously expressed at different developmental stages but is highly expressed in the adult head, the non-chemosensory organ. Fluorescence-based competitive binding assays show that β-ionone, nerolidol, farnesol and insect juvenile hormone III (JHIII) strongly bind to AlinOBP14. No significant internal binding pocket is predicted by homology modeling. Instead, the long N-terminal and C-terminal regions and parts of several α-helixes form a cupped cavity to accommodate ligands. Molecular docking reveals that the four potential ligands have distinct binding orientations, implying different roles of the N-terminal extension in ligand recognition. This hypothesis is further confirmed via a ligand binding assay in which the recombinant N-terminal mutant AlinOBP14 displays comparable binding affinities for β-ionone and trans, trans-farnesol but decreased binding affinities for nerolidol and JHIII. Thus, our current study is the first to characterize the ligand binding spectra of a Plus-C OBP in hemipteran insect species and reveals that N-terminal extensions could be required for its recognition of putative ligands.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge