English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biomedical Materials Research - Part B Applied Biomaterials 2015-Feb

Extended fatigue life of a catalyst free self-healing acrylic bone cement using microencapsulated 2-octyl cyanoacrylate.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Alice B W Brochu
Oriane B Matthys
Stephen L Craig
William M Reichert

Keywords

Abstract

The tissue adhesive 2-octyl cyanoacrylate (OCA) was encapsulated in polyurethane microshells and incorporated into bone cement to form a catalyst free, self-healing bone cement comprised of all clinically approved components. The bending strength, modulus, and fatigue lifetime were investigated in accordance with ASTM and ISO standards for the testing of PMMA bone cement. The bending strength of bone cement specimens decreased with increasing wt % capsules content for capsules without or with OCA, with specimens of <5 wt % capsule content showing minimal effect. In contrast, bone cement bending modulus was insensitive to capsule content. Load controlled fatigue testing was performed in air at room temperature on capsule free bone cement (0 wt %), bone cement with 5 wt % OCA-free capsules (5 wt % No OCA), and 5 wt % OCA-containing capsules (5 wt % OCA). Specimens were tested at a frequency of 5 Hz at maximum stresses of 90%, 80%, 70%, and 50% of each specimen's bending strength until failure. The 5 wt % OCA exhibited significant self-healing at 70% and 50% of its reference strength (p < 0.05). Fatigue testing of all three specimen types in air at 22 MPa (50% of reference strength of the 5 wt % OCA specimens) showed that the cycles to failure of OCA-containing specimens was increased by two-fold compared with the OCA-free and capsule-free specimens. This study represents the first demonstration of dynamic, catalyst free self-healing in a biomaterial formulation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge