English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2004-May

Extracellular cross-linking of xylan and xyloglucan in maize cell-suspension cultures: the role of oxidative phenolic coupling.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard

Keywords

Abstract

Cell-suspension cultures of maize ( Zea mays L.) released soluble extracellular polysaccharides (SEPs) into their medium. Some or all of the SEPs had feruloyl ester groups. Pulse-labelling with [(3)H]arabinose was used to monitor changes in the SEPs' M(r) (estimated by gel-permeation chromatography) with time after synthesis. Newly released (3)H-SEPs were 1.3-1.6 MDa, but between 2 days and 3 days after radiolabelling (in one experiment) or between 5 days and 6 days (in another), the (3)H-SEPs abruptly increased to approximately 17 MDa, indicating extensive cross-linking. The cross-linking involved both [(3)H]xylan and [(3)H]xyloglucan components of the SEPs. The cross-links could be cleaved by alkali, returning the SEPs to their original M(r). In 0.1 M NaOH at 37 degrees C, 58% cleavage was effected within 24 h. The requirement for such prolonged alkali treatment indicates that ester-bonded (e.g. diferuloyl) groups were not solely responsible for the cross-linking. Bonds cleaved only by relatively severe alkali could include benzyl ether linkages formed between sugar residues and oxidised phenolics that had quinone methide structures. The ability of alkali to cleave the cross-links was independent of the age of the (3)H-SEP molecules. Cross-linking of (3)H-SEPs in vivo was delayed (up to approx. 7 days after radiolabelling) by exogenous sinapic acid, chlorogenic acid or rutin-agents predicted to compete with the oxidative coupling of feruloyl-polysaccharides. The cross-linking was promoted by exogenous ferulic acid or l-tyrosine, possibly because these compounds acted as precursors for polysaccharide feruloylation, thus providing additional partner substrates for the oxidative coupling of previously formed (3)H-SEPs. The ability of certain phenolics to prevent the cross-linking of (3)H-SEPs supports the idea that the cross-linking involved phenolic oxidation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge