English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Medicinal Food 2012-Jun

Extract from Dioscorea batatas ameliorates insulin resistance in mice fed a high-fat diet.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Soyoung Kim
Hyejeong Jwa
Yasuko Yanagawa
Taesun Park

Keywords

Abstract

The aim of this study was to investigate whether Dioscorea batatas (DB) extract attenuates high-fat diet (HFD)-induced insulin resistance in the visceral adipose tissues of mice, and by what mechanism(s). Mice were fed a HFD for 4 weeks to induce the early development of insulin resistance. The DB extract was administered to mice fed a HFD by oral gavage at a dose of 100 mg/kg body weight daily for 7 weeks. Biochemical parameters in blood were measured using enzymatic kits, and the expression levels of glucose transporter 4 (GLUT4), phosphorylated (p-)S6K1, phosphorylated v-akt murine thymoma viral oncogene homolog (p-AKT), and phosphorylated extracellular regulated kinase (p-ERK) in epididymal fat tissue were determined by western blot analyses. The DB extract effectively reversed the HFD-induced elevations in plasma glucose and insulin levels, and the homeostasis model assessment for insulin resistance and oral glucose tolerance test values. The level of p-AKT protein was up-regulated, whereas the levels of p-ERK and p-S6K1 proteins were down-regulated in the adipose tissues of DB mice compared with HFD mice. Furthermore, the DB extract significantly reversed the HFD-induced decrease in the plasma membrane GLUT4 level in the adipose tissue of mice. The DB extract improved glucose metabolism in HFD-fed mice through the up-regulation of plasma membrane GLUT4 content in the visceral adipose tissue. Activation of the insulin signaling cascade leading to GLUT4 translocation was the mechanism underlying the beneficial effects of the DB extract on early-stage obesity-induced insulin resistance.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge