English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Food and Chemical Toxicology 2011-Feb

Extraction and identification of three major aldose reductase inhibitors from Artemisia montana.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hyun Ah Jung
M D Nurul Islam
Yong Soo Kwon
Seong Eun Jin
You Kyung Son
Jin Ju Park
Hee Sook Sohn
Jae Sue Choi

Keywords

Abstract

Aldose reductase inhibitors (ARIs) provide an important therapeutic and preventive opportunity against hyperglycemia associated diabetic complications. The methanolic extracts of 12 species from the genus Artemisia exhibited significant in vitro rat lens AR (RLAR) inhibitory activities with IC(50) values ranging from 0.51 to 13.45 μg/mL (quercetin, 0.64 μg/mL). Since the whole plant of Artemisia montana showed the highest RLAR inhibitory activity, bioassay-guided fractionation was performed to obtain ethyl acetate and n-butanol fractions. Repeated column chromatography of two active fractions, yielded fifteen compounds, including four chlorogenic acids (3,5-di-O-caffeoylquinic acid, chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid), six flavonoids (apigenin, luteolin, quercetin, isoquercitrin, hyperoside, luteolin 7-rutinoside), and five coumarins (umbelliferone, scoparone, scopoletin, esculetin, and scopolin); their structures were confirmed by spectroscopic methods. 3,5-Di-O-caffeoylquinic acid and chlorogenic acid, as well as test flavonoids, displayed the most potent RLAR inhibitory activities with IC(50) values ranging from 0.19 to 5.37 μM. Furthermore, the HPLC profiles of the ethyl acetate and n-butanol fractions indicated that 3,5-di-O-caffeoylquinic acid, chlorogenic acid, and hyperoside, as major compounds, might play crucial roles in RLAR inhibition. The results suggest that A. montana and three key AR inhibitors therein would clearly be potential candidates as therapeutic or preventive agents for diabetic complications.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge