English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Endocrinology 2013

FXR activation normalizes insulin sensitivity in visceral preadipocytes of a rabbit model of MetS.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Elena Maneschi
Linda Vignozzi
Annamaria Morelli
Tommaso Mello
Sandra Filippi
Ilaria Cellai
Paolo Comeglio
Erica Sarchielli
Alessandra Calcagno
Benedetta Mazzanti

Keywords

Abstract

Insulin resistance is the putative key underlying mechanism linking adipose tissue (AT) dysfunction with liver inflammation and steatosis in metabolic syndrome (MetS). We have recently demonstrated that the selective farnesoid X receptor (FXR) agonist obeticholic acid (OCA) ameliorates insulin resistance and the metabolic profile with a marked reduction in the amount of visceral AT (VAT) in a high-fat diet (HFD)-induced rabbit model of MetS. These effects were mediated by the activation of FXR, since treatment with the selective TGR5 agonist INT-777 was not able to ameliorate the metabolic parameters evaluated. Herein, we report the effects of in vivo OCA dosing on the liver, the VAT, and the adipogenic capacity of VAT preadipocytes (rPADs) isolated from rabbits on a HFD compared with those on a control diet. VAT and liver were studied by immunohistochemistry, Western blot analysis, and RT-PCR. rPADs were exposed to a differentiating mixture to evaluate adipogenesis. Adipocyte size, hypoxia, and the expression of perilipin and cytosolic insulin-regulated glucose transporter GLUT4 (SLC2A4) were significantly increased in VAT isolated from the HFD rabbits, and normalized by OCA. The expression of steatosis and inflammation markers was increased in the liver of the HFD rabbits and normalized by OCA. rPADs isolated from the HFD rabbits were less sensitive to insulin, as demonstrated by the decreased insulin-induced glucose uptake, triglyceride synthesis, and adipogenic capacity, as well as by the impaired fusion of lipid droplets. OCA treatment preserved all the aforementioned metabolic functions. In conclusion, OCA dosing in a MetS rabbit model ameliorates liver and VAT functions. This could reflect the ability of OCA to restore insulin sensitivity in AT unable to finalize its storage function, counteracting MetS-induced metabolic alterations and pathological AT deposition.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge