English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Photochemistry and Photobiology B: Biology 2018-Jan

Facile biological synthetic strategy to morphologically aligned CeO2/ZrO2 core nanoparticles using Justicia adhatoda extract and ionic liquid: Enhancement of its bio-medical properties.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Nithya Pandiyan
Balaji Murugesan
Jegatheeswaran Sonamuthu
Selvam Samayanan
Sundrarajan Mahalingam

Keywords

Abstract

In this study, a typical green synthesis route has approached for CeO2/ZrO2 core metal oxide nanoparticles using ionic liquid mediated Justicia adhatoda extract. This synthesis method is carried out at simple room temperature condition to obtain the core metal oxide nanoparticles. XRD, SEM and TEM studies employed to study the crystalline and surface morphological properties under nucleation, growth, and aggregation processes. CeO2/ZrO2 core metal oxides display agglomerated nano stick-like structure with 20-45nm size. GC-MS spectroscopy confirms the presence of vasicinone and N,N-Dimethylglycine present in the plant extract, which are capable of converting the corresponding metal ion precursor to CeO2/ZrO2 core metal oxide nanoparticles. In FTIR, the corresponding stretching for Ce-O and Zr-O bands indicated at 498 and 416cm-1 and Raman spectroscopy also supports typical stretching frequencies at 463 and 160cm-1. Band gap energy of the CeO2/ZrO2 core metal oxide is 3.37eV calculated from UV- DRS spectroscopy. The anti-bacterial studies performed against a set of bacterial strains the result showed that core metal oxide nanoparticles more susceptible to gram-positive (G+) bacteria than gram-negative (G-) bacteria. A unique feature of the antioxidant behaviors core metal oxides reduces the concentration of DPPH radical up to 89%. The CeO2/ZrO2 core metal oxide nanoparticles control the S. marcescent bio-film formation and restrict the quorum sensing. The toxicology behavior of CeO2/ZrO2 core metal oxide NPs is found due to the high oxygen site vacancies, ROS formation, smallest particle size and higher surface area. This type of green synthesis route may efficient and the core metal oxide nanoparticles will possess a good bio-medical agent in future.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge