English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemical Research in Toxicology 2002-Feb

Fate of indole-3-carbinol in cultured human breast tumor cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Richard E Staub
Chunling Feng
Bruce Onisko
George S Bailey
Gary L Firestone
Leonard F Bjeldanes

Keywords

Abstract

Indole-3-carbinol (I3C), a natural component of Brassica vegetables, is a promising cancer preventive agent that can reduce the incidence of tumors in reproductive organs when administered in the diet. Here we report on the metabolic fate of radiolabeled I3C in MCF-7 cells. I3C was surprisingly inert to metabolism by these cells with a half-life in medium of approximately 40 h. [(3)H]I3C levels in media declined at a similar rate whether incubation was with cultured cells or in cell-free medium. Neither [(3)H]I3C nor its modified products accumulated in MCF-7 cells and only low levels of intact I3C were detected in cellular fractions. In contrast, I3C represented over 30% of the radioactivity in media even after 72 h. In cytosolic fractions, the 3-(cystein-S-ylmethyl) and 3-(glutathion-S-ylmethyl) conjugates of [(3)H]I3C were the primary conversion products identified after 16 h, representing approximately 50% and approximately 15% of the radioactivity in these fractions, respectively. The reaction of I3C with thiols appears to be nonenzymatic since the cysteine conjugate is produced when I3C is incubated in cell-free medium containing additional cysteine. Both cellular and extracellular proteins were nonspecifically modified with [(3)H]I3C. In medium, proteins are radiolabeled even in the absence of cells, indicating again that enzymatic activation was not required. I3C was also oxidized to indole-3-carboxaldehyde and indole-3-carboxylic acid in culture medium independent of cells. Unexpectedly, 3,3'-diindolylmethane (DIM), an I3C product with in vitro and in vivo biological activity, was detected in cellular fractions and appeared to accumulate in the nucleus, representing approximately 40% of this fraction after 72 h treatment. These findings suggest that MCF-7 cells do not vigorously metabolize I3C and that the major route of reaction is with cellular thiols such as glutathione and proteins. The accumulation of DIM in the nucleus suggests that this product may have a role in the cellular biological activities of I3C.3

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge