English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biomaterials 2010-Feb

Fatigue and human umbilical cord stem cell seeding characteristics of calcium phosphate-chitosan-biodegradable fiber scaffolds.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Liang Zhao
Elena F Burguera
Hockin H K Xu
Nikhil Amin
Heon Ryou
Dwayne D Arola

Keywords

Abstract

Calcium phosphate cement (CPC) has in situ-setting ability and bioactivity, but the brittleness and low strength limit CPC to only non-load-bearing bone repairs. Human umbilical cord mesenchymal stem cells (hUCMSCs) can be harvested without an invasive procedure required for the commonly studied bone marrow MSCs. However, little has been reported on hUCMSC delivery via bioactive scaffolds for bone tissue engineering. The objectives of this study were to develop CPC scaffolds with improved resistance to fatigue and fracture, and to investigate hUCMSC delivery for bone tissue engineering. In fast fracture, CPC with 15% chitosan and 20% polyglactin fibers (CPC-chitosan-fiber scaffold) had flexural strength of 26mPa, higher than 10mPa for CPC control (p<0.05). In cyclic loading, CPC-chitosan-fiber specimens that survived 2x10(6) cycles had the maximum stress of 10MPa, compared to 5MPa of CPC control. CPC-chitosan-fiber specimens that failed after multiple cycles had a mean stress-to-failure of 9MPa, compared to 5.8MPa for CPC control (p<0.05). hUCMSCs showed excellent viability when seeded on CPC and CPC-chitosan-fiber scaffolds. The percentage of live cells reached 96-99%. Cell density was about 300cells/mm(2) at day 1; it proliferated to 700cells/mm(2) at day 4. Wst-1 assay showed that the stronger CPC-chitosan-fiber scaffold had hUCMSC viability that matched the CPC control (p>0.1). In summary, this study showed that chitosan and polyglactin fibers substantially increased the fatigue resistance of CPC, and that hUCMSCs had excellent proliferation and viability on the scaffolds.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge