English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 1996

Feed-back regulation of gibberellin biosynthesis and gene expression in Pisum sativum L.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
D N Martin
W M Proebsting
T D Parks
W G Dougherty
T Lange
M J Lewis
P Gaskin
P Hedden

Keywords

Abstract

Treatment of tall and dwarf (3 beta-hydroxylase impaired) genotypes of pea (Pisum sativum L.) with the synthetic, highly active gibberellin (GA), 2,2-dimethyl GA4, reduced the shoot contents of C19-GAs, including GA1, and increased the concentration of the C20-GA, GA19. In shoots of the slender (la crys) mutant, the content of C19-GAs was lower and GA19 content was higher than in those of the tall line. Metabolism of GA19 and GA20 in leaves of a severe (na) GA-deficient dwarf mutant was reduced by GA treatment. The results suggest feed-back regulation of the 20-oxidation and 3 beta-hydroxylation reactions. Feed-back regulation of GA 20-oxidation was studied further using a cloned GA 20-oxidase cDNA from pea. The cDNA, Ps074, was isolated using polymerase chain reaction with degenerate oligonucleotide primers based on pumpkin and Arabidopsis 20-oxidase sequences. After expression of this cDNA clone in Escherichia coli, the product oxidized GA12 to GA15, GA24 and the C19-GA, GA9, which was the major product. The 13-hydroxylated substrate GA53 was similarly oxidized, but less effectively than GA12, giving mainly GA44 with low yields of GA19 and GA20. Ps074 hybridized to polyadenylated RNA from expanding shoots of pea. Amounts of this transcript were less in the slender genotype than in the tall line and were reduced in GA-deficient genotypes by treatment with GA3, suggesting that there is feed-back regulation of GA 20-oxidase gene expression.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge