English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2010-Dec

First Report of Impatiens necrotic spot virus Infecting Greenhouse-Grown Potatoes in Washington State.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J Crosslin
L Hamlin

Keywords

Abstract

In April and May 2010, leaves on approximately one-half of 200 potato (Solanum tuberosum L. cv. Atlantic) plants, 20 to 25 cm high, grown from prenuclear minitubers in greenhouses located at the USDA-ARS facility in Prosser, WA exhibited necrotic spots similar to those produced by the early blight pathogen, Alternaria solani. Fungicide sprays did not reduce incidence of the symptoms. Observations associated the symptoms with thrips feeding damage so plants were tested for Tomato spotted wilt virus (TSWV) and Impatiens necrotic spot virus (INSV) with ImmunoStrips from Agdia, Inc (Elkhart, IN). Three of three, two of two, and two of two symptomatic plants from three greenhouses were positive for INSV and negative for TSWV. Two symptomless plants tested negative. Four of four symptomatic and zero of two symptomless plants were positive by reverse transcription (RT)-PCR with INSV specific primers (forward: 5' TAACACAACACAAAGCAAACC 3' and reverse: 5' CCAAATACTACTTTAACCGCA 3') (4). The 906-bp amplicon from one sample was cloned and three clones were sequenced. The three clones were 99.7% identical, and BLAST analysis of the consensus sequence (GenBank Accession No. HM802206) showed 99% identity to INSV accessions D00914 and X66972, and 98% identity to other INSV isolates. The isolate, designated INSV pot 1, was mechanically inoculated to one plant of potato cv. GemStar and produced local, spreading necrotic lesions. The virus did not go systemic, as determined by RT-PCR of upper leaves 30 days after inoculation. The local necrotic lesions on GemStar were positive for INSV by ImmunoStrips and RT-PCR. The original source of the INSV inoculum is unknown. However, hairy nightshade (Solanum sarrachoides Sendtn.) and plantain (Plantago major L.) weeds in an ornamental planting near one of the affected greenhouses tested positive for INSV by ImmunoStrips. The nightshade showed obvious thrips feeding damage but no obvious virus symptoms while the plantain showed less thrips feeding damage but distinct necrotic rings. Subsequently, two of two symptomatic potato plants of cv. Desiree in another greenhouse near the initial site tested INSV positive with the ImmunoStrips. In addition to the necrotic lesions on leaves observed in cv. Atlantic, these plants also showed necrosis of petioles and stems. INSV is transmitted by a number of species of thrips, but the western flower thrips (Frankliniella occidentalis Perg.) is considered the most important under greenhouse conditions. The species of thrips in the affected greenhouses was not determined before all materials were discarded. Both INSV and the thrips vector have large host ranges including many crops and weeds, and have become increasingly important in recent years (1,2). INSV was reported on greenhouse-grown potatoes in New York in 2005 (3). These findings indicate INSV can be a major problem in greenhouse potatoes, whether for research purposes or production of virus-free minitubers destined for field plantings. References: (1) M. L. Daughtrey et al. Plant Dis. 81:1220, 1997. (2) R. A. Naidu et al. Online publication. doi:10.1094/PHP-2005-0727-01-HN, Plant Health Progress, 2005. (3) K. L. Perry et al. Plant Dis. 89:340, 2005. (4) K. Tanina et al. Jpn. J. Phytopathol. 67:42, 2001. ERRATUM: A correction was made to this Disease Note on September 7, 2012. The forward and reverse INSV specific primer sequences were corrected.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge