English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2013-Mar

First Report of Leaf Spot of Saponaria officinalis Caused by Alternaria nobilis in Italy.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
A Garibaldi
D Bertetti
A Poli
M Gullino

Keywords

Abstract

Saponaria officinalis (Vize) Simmons (common name bouncingbet) is a low maintenance perennial plant belonging to the Caryophyllaceae family, typically grown in parks and gardens. During the summers of 2011 and 2012, extensive necrosis were observed on leaves of plants grown in private gardens, near Biella (northern Italy). The disease affected 90% of 1- to 2-year-old plants. The first symptoms were usually pale brown lesions 1 to 5 mm in diameter and sometimes coalesced. Lesions were circular to irregular with a dark purple halo, with infected leaves eventually turning chlorotic. The conidia observed on infected leaves were olivaceous brown and obclavate, with a beak. Conidia showed 8 to 15 (average 12) transverse and 4 to 14 (average 11) longitudinal septa, with slight constrictions connected with septa, and were 78.3 to 177.7 (average 135.5) × 19.0 to 34.3 (average 26.5) μm. The beak was 20.0 to 62.2 (average 33.7) μm in length, with 0 to 6 (average 3) transverse septa and no longitudinal septa. The fungus was consistently isolated from infected leaves on potato dextrose agar (PDA). The isolate, grown for 14 days at 20 to 24°C with 10 h of darkness and 14 h of light on sterilized host leaves plated on PDA, produced conidiophores single, unbranched, flexuous, septate with conidia in short chains, similar to those observed on the leaves and previously described. On the basis of its morphological characteristics, the pathogen was identified as Alternaria sp. (3). DNA was extracted using Nucleospin Plant Kit (Macherey Nagel) and PCR carried out using ITS 1/ITS 4 primer (4). A 542-bp PCR product was sequenced and a BLASTn search confirmed that the sequence corresponded to A. dianthi (AY154702), recently renamed A. nobilis (2). The nucleotide sequence has been assigned the GenBank Accession No. JX647848. Pathogenicity tests were performed by spraying leaves of healthy 3-month-old plants of S. officinalis with an aqueous 2 × 105 spore/ml suspension. The inoculum was obtained from cultures of the fungus grown on PDA amended with host leaves for 14 days, in light-dark, at 22 ± 1°C. Plants sprayed only with water served as controls. Four pots (1 plant/pot) were used for each treatment. Plants were covered with plastic bags for 4 days after inoculation and maintained in a glasshouse at 21 ± 1 °C. Lesions developed on leaves 9 days after inoculation with the spore suspension, whereas control plants remained healthy. A. nobilis was consistently reisolated from these lesions. The pathogenicity test was carried out twice. The presence of A. dianthi was reported on S. officinalis in Denmark (1) and Turkey. This is, to our knowledge, the first report of A. nobilis on S. officinalis in Italy. The presence and importance of this disease is, at present, limited. References: (1) P. Neergaard. Danish species of Alternaria and Stemphylium. Oxford University Press, 1945. (2) E. G. Simmons. Mycotaxon 82:7, 2002. (3) E. G. Simmons. Alternaria: An Identification Manual. CBS Biodiversity Series 6, Utrecht, The Netherlands, 2007. (4) T. J. White et al. In: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge