English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pest Management Science 2018-Jun

First insights into insecticidal activity against Aedes aegypti and partial biochemical characterization of a novel low molecular mass chymotrypsin-trypsin inhibitor purified from Lonchocarpus sericeus seeds.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Luiz Cp Almeida Filho
Pedro Ms Tabosa
Denise C Hissa
Ilka M Vasconcelos
Ana Fu Carvalho

Keywords

Abstract

BACKGROUND

Arboviroses such as dengue, Zika and chikungunya represent a serious public health issue as a consequence of the absence of approved vaccines or specific antiviral drugs against the arboviruses that cause them. One way to prevent these diseases is by combating the vector mosquito, Aedes aegypti (Diptera), which has serine proteases in the midgut. Protease inhibitors are molecules that can block enzyme activity, impairing digestion and nutrition, which can lead to death. Thus, we purified and characterized a novel chymotrypsin-trypsin inhibitor (LsCTI) from Lonchocarpus sericeus seeds and investigated its effect upon Ae. aegypti egg hatching, larval development and digestive proteases.

RESULTS

LsCTI showed a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and the molecular mass determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was 8870.45 Da. Kinetics analyses revealed a noncompetitive type of inhibition and low inhibition constant (Ki ) for chymotrypsin (8.24 x 10-8 m). The thermal resistance was remarkable, even at 100 °C for 180 min. The inhibitor concentration required for 50-percent enzyme inhibition (IC50 ) of LsCTI was 4.7 x 10-7 m for Ae. aegypti midgut larval enzymes. LsCTI did not affect egg hatchability at 0.3 mg mL-1 , but caused a high larval mortality rate (77%) and delayed development (37%).

CONCLUSIONS

LsCTI is a novel protease inhibitor with remarkable biochemical characteristics and is a potential tool to control Ae. aegypti development. © 2017 Society of Chemical Industry.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge