English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 2001-Jan

Flavonoid 6-hydroxylase from soybean (Glycine max L.), a novel plant P-450 monooxygenase.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
A O Latunde-Dada
F Cabello-Hurtado
N Czittrich
L Didierjean
C Schopfer
N Hertkorn
D Werck-Reichhart
J Ebel

Keywords

Abstract

Cytochrome P-450-dependent hydroxylases are typical enzymes for the modification of basic flavonoid skeletons. We show in this study that CYP71D9 cDNA, previously isolated from elicitor-induced soybean (Glycine max L.) cells, codes for a protein with a novel hydroxylase activity. When heterologously expressed in yeast, this protein bound various flavonoids with high affinity (1.6 to 52 microm) and showed typical type I absorption spectra. These flavonoids were hydroxylated at position 6 of both resorcinol- and phloroglucinol-based A-rings. Flavonoid 6-hydroxylase (CYP71D9) catalyzed the conversion of flavanones more efficiently than flavones. Isoflavones were hardly hydroxylated. As soybean produces isoflavonoid constituents possessing 6,7-dihydroxy substitution patterns on ring A, the biosynthetic relationship of flavonoid 6-hydroxylase to isoflavonoid biosynthesis was investigated. Recombinant 2-hydroxyisoflavanone synthase (CYP93C1v2) efficiently used 6,7,4'-trihydroxyflavanone as substrate. For its structural identification, the chemically labile reaction product was converted to 6,7,4'-trihydroxyisoflavone by acid treatment. The structures of the final reaction products for both enzymes were confirmed by NMR and mass spectrometry. Our results strongly support the conclusion that, in soybean, the 6-hydroxylation of the A-ring occurs before the 1,2-aryl migration of the flavonoid B-ring during isoflavanone formation. This is the first identification of a flavonoid 6-hydroxylase cDNA from any plant species.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge