English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BioFactors 2018-Sep

Flavonoids as putative modulators of Δ4-, Δ5-, and Δ6-desaturases: Studies in cultured hepatocytes, myocytes, and adipocytes.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Gianna Kühn
Kathrin Pallauf
Carsten Schulz
Gerald Rimbach

Keywords

Abstract

This study was conducted to screen flavonoids for affecting expression of desaturases involved in omega-3 fatty acid synthesis and ceramide (CER) metabolism. To this end, cultured HepG2 hepatocytes, C2C12 myocytes, and 3T3-L1 adipocytes were treated with nontoxic concentrations of 12 selected flavonoids and expression of Δ4-, Δ5-, and Δ6-desaturases (DEGS1, FADS1, and FADS2, respectively) was determined. The flavonoids tested were more cytotoxic to HepG2 and 3T3-L1 than to C2C12 cells. In HepG2 cells, FADS1 was induced by quercetin and FADS2 expression was increased by daidzein, genistein, and pratensein treatment. DEGS1 was increased by apigenin, luteolin, orobol, and quercetin administration. In differentiated C2C12 cells, substances had no inducing effect or even lowered target gene expression. Pratensein induced both FADS1 and FADS2 in differentiated 3T3-L1 cells and DEGS1 was increased by treatment with apigenin, genistein, luteolin, orobol, and quercetin. In conclusion, pratensein may be an interesting test compound for further studies in vitro and in vivo on omega-3 synthesis since it induces its rate-limiting enzyme FADS2. Apigenin, luteolin, orobol, and quercetin induced DEGS1 and thereby possibly synthesis of proapoptotic CER in malignant HepG2 cells and 3T3-L1. In contrast, in benign C2C12 cells, they did not elevate mRNA steady state levels of DEGS1. That may partly explain the higher resistance of C2C12 cells against flavonoids compared to the other cell lines. By affecting tumor cells and nontumor cells differently, these flavonoids may be promising substances for further research regarding anticancer properties. © 2018 BioFactors, 44(5):485-495, 2018.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge