English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Cerebral Blood Flow and Metabolism 1996-May

Flow threshold for reduction of cyclic AMP binding in the hippocampus CA1 and other brain regions during stroke development in gerbils.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
K Tanaka
S Gomi
B Mihara
T Shirai
S Nogawa
H Nozaki
E Nagata
T Kondo
Y Fukuuchi

Keywords

Abstract

The flow threshold for alterations of the in vitro [3H]cyclic AMP (cAMP) binding, an indicator of the total amount of particulate cAMP-dependent protein kinase, was evaluated in the gerbil brain after 30 min, 2 h, and 6 h of unilateral common carotid artery occlusion, respectively. The autoradiographic method developed in our laboratory enabled us to measure the [3H]cAMP binding and local CBF in each region of the same brain. The ischemic flow thresholds for reduction of the cAMP binding in the hippocampus CA1 were 18, 34, and 49 ml 100 g-1 min-1 after 30-min, 2-h, and 6-h ischemia, respectively. These values were higher than those in other regions such as the hippocampus CA, and temporal cerebral cortex in each duration of ischemia. These findings indicate that (a) the ischemic flow threshold for perturbation of the cAMP system may be higher in the hippocampus CA1 than in other brain regions, suggesting that the hippocampus CA1 could be especially vulnerable to acute ischemic stress; and (b) the level of the aforementioned threshold may increase progressively during the time course of ischemia in particular regions such as the hippocampus CA1 and CA3, suggesting that the duration of ischemia exerts a definite influence on the viability of the ischemic neuronal cells in these regions.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge