English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cancer Chemotherapy and Pharmacology 2008-Aug

Formaldehyde-releasing prodrugs specifically affect cancer cells by depletion of intracellular glutathione and augmentation of reactive oxygen species.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Inesa Levovich
Abraham Nudelman
Gili Berkovitch
Lonnie P Swift
Suzanne M Cutts
Don R Phillips
Ada Rephaeli

Keywords

Abstract

Histone deacetylase inhibitory prodrugs that are metabolized to carboxylic acid(s) and aldehyde(s) possess antineoplastic properties. Formaldehyde-releasing prodrugs were shown to be the most potent. The objective of this study was to gain understanding on the mode of action of these prodrugs in cancer cells. HL-60 and MCF-7 cells in the presence of N-acetylcysteine or glutathione were protected from death induced by formaldehyde-releasing prodrugs but not from death caused by the homologous acetaldehyde-releasing ones. Cell death induced by the former was accompanied by depletion of intracellular glutathione and increased reactive oxygen species that were attenuated by N-acetylcysteine. At fourfold higher concentration, acetaldehyde-releasing prodrugs increased reactive oxygen species that were further augmented by N-acetylcysteine. In HL-60 cells, formaldehyde-releasing prodrugs dissipated the mitochondrial membrane potential and glutathione or N-acetylcysteine restored it. Although acetaldehyde-releasing prodrugs dissipated mitochondrial membrane potential, it occurred at 20-fold greater concentration and was unaffected by the antioxidants. Formaldehyde-releasing prodrugs abrogated c-myc protein expression and elevated c-Jun and H2AX phosphorylation, N-acetylcysteine partially reversed these changes. Herein, we show that formaldehyde-releasing prodrugs diminish the level of glutathione most likely by forming S-formylglutathione adducts resulting in increase of reactive oxygen species followed by signaling events that lead to cancer cells death.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge