English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Phytoremediation 2019-Oct

Formaldehyde removal in the air by six plant systems with or without rhizosphere microorganisms.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Suya Zhao
Yuanyuan Zhao
Hanxiao Liang
Yuhong Su

Keywords

Abstract

Uptake and in-plant transport of formaldehyde by six plants with or without soil microorganisms were investigated. The capabilities of fresh and boiled leaf extracts to dissipate added formaldehyde were also measured to evaluate formaldehyde metabolism in plant tissues. Results show that when the initial formaldehyde level in air was 0.56 ± 0.04 mg·m-3, the removal rate in the plant-only systems varied from 1.91 to 31.8 μg·h-1·g-1 FW (fresh weight). The removal rate of plants in the plant-only systems were ordered as Helianthus annuus Linn > Lycopersicon esculentum Miller > Oryza sativa > Sansevieria trifasciata Prain > Bryophyllum pinnatum > Mesembryanthemum cordifolium L. f. Most reduction of formaldehyde in the air was due to degradation by active components in the plant tissues, of which 4-64% of these were through to be enzymatic reactions. In the microbe-plant systems, formaldehyde removal rates increased by 0.24-9.53 fold compared to the plant-only systems, with approximately 19.6-90.5% of the formaldehyde reduction resulting from microbial degradation. Microorganisms added to the rhizosphere solution enhanced phytoremediation by increasing the downward transport of formaldehyde and its release by roots. Results suggest a new means to screen for efficient plant species that can be used for phytoremediation of indoor air.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge