English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Carcinogenesis 2007-Jul

Fractionation of high molecular weight tannins in grape seed extract and identification of procyanidin B2-3,3'-di-O-gallate as a major active constituent causing growth inhibition and apoptotic death of DU145 human prostate carcinoma cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Chapla Agarwal
Ravikanth Veluri
Manjinder Kaur
Shen-Chieh Chou
John A Thompson
Rajesh Agarwal

Keywords

Abstract

Several studies have documented the anticancer and chemopreventive efficacy of grape seed extract (GSE) against various malignancies including prostate cancer (PCA). GSE is a complex mixture of polyphenols including gallic acid (GA), catechin (Cat), epicatechin (Epi) and procyanidins-oligomers of Cat and Epi, some of which are esterified with GA. Initial studies to identify the GSE components cytotoxic to human prostate carcinoma (DU145) cells demonstrated that GA and several crude chromatographic fractions containing procyanidin dimers and trimers were biologically active. The focus of the present work was to purify 14 procyanidins from the fractions and to identify those with highest activity toward growth inhibition, cell death and apoptosis in DU145 cells. The most active procyanidin was identified by mass spectrometry and enzymatic hydrolysis as the 3,3'-di-O-gallate ester of procyanidin dimer B2 (Epi-Epi). B2-digallate exhibited dose-dependent effects on DU145 cells over the range 25-100 microM, whereas GA exhibited comparable activity at lower doses but was highly lethal at 100 microM. Structure-activity studies demonstrated that all three hydroxyl groups of GA are necessary for activity, but a free carboxylic acid group is not required even though esterification reduced the activity of GA. These data, and the fact that non-esterified B2 exhibited little or no activity, suggest that the galloyl groups of B2-digallate are primarily responsible for its effects on DU145 cells. Taken together, these data identify procyanidin B2-3,3'-di-O-gallate as a novel biologically active agent in GSE that should be studied in greater detail to determine its effects against PCA.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge