English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Frontiers in Plant Science 2016

Frameshift Mutation Confers Function as Virulence Factor to Leucine-Rich Repeat Protein from Acidovorax avenae.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Machiko Kondo
Hiroyuki Hirai
Takehito Furukawa
Yuki Yoshida
Aika Suzuki
Takemasa Kawaguchi
Fang-Sik Che

Keywords

Abstract

Many plant pathogens inject type III (T3SS) effectors into host cells to suppress host immunity and promote successful infection. The bacterial pathogen Acidovorax avenae causes brown stripe symptom in many species of monocotyledonous plants; however, individual strains of each pathogen infect only one host species. T3SS-deleted mutants of A. avenae K1 (virulent to rice) or N1141 (virulent to finger millet) caused no symptom in each host plant, suggesting that T3SS effectors are involved in the symptom formation. To identify T3SS effectors as virulence factors, we performed whole-genome and predictive analyses. Although the nucleotide sequence of the novel leucine-rich repeat protein (Lrp) gene of N1141 had high sequence identity with K1 Lrp, the amino acid sequences of the encoded proteins were quite different due to a 1-bp insertion within the K1 Lrp gene. An Lrp-deleted K1 strain (KΔLrp) did not cause brown stripe symptom in rice (host plant for K1); by contrast, the analogous mutation in N1141 (NΔLrp) did not interfere with infection of finger millet. In addition, NΔLrp retained the ability to induce effector-triggered immunity (ETI), including hypersensitive response cell death and expression of ETI-related genes. These data indicated that K1 Lrp functions as a virulence factor in rice, whereas N1141 Lrp does not play a similar role in finger millet. Yeast two-hybrid screening revealed that K1 Lrp interacts with oryzain α, a pathogenesis-related protein of the cysteine protease family, whereas N1141 Lrp, which contains LRR domains, does not. This specific interaction between K1 Lrp and oryzain α was confirmed by Bimolecular fluorescence complementation assay in rice cells. Thus, K1 Lrp protein may have acquired its function as virulence factor in rice due to a frameshift mutation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge