English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2001-Jan

Free and conjugated benzoic acid in tobacco plants and cell cultures. Induced accumulation upon elicitation of defense responses and role as salicylic acid precursors.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J Chong
M A Pierrel
R Atanassova
D Werck-Reichhart
B Fritig
P Saindrenan

Keywords

Abstract

Salicylic acid (SA) is a key endogenous component of local and systemic disease resistance in plants. In this study, we investigated the role of benzoic acid (BA) as precursor of SA biosynthesis in tobacco (Nicotiana tabacum cv Samsun NN) plants undergoing a hypersensitive response following infection with tobacco mosaic virus or in tobacco cell suspensions elicited with beta-megaspermin, an elicitor from Phytophthora megasperma. We found a small pool of conjugated BA in healthy leaves and untreated cell suspensions of tobacco, whereas free BA levels were barely detectable. Infection of plants with tobacco mosaic virus or elicitation of cells led to a rapid de novo synthesis and accumulation of conjugated BA, whereas free BA was weakly induced. In presence of diphenylene iodonium, an inhibitor of superoxide anion formation, SA accumulation was abolished in elicited cells and much higher BA levels were concomitantly induced, mainly as a conjugated form. Furthermore, piperonylic acid, an inhibitor of cinnamate-4-hydroxylase was used as a powerful tool to redirect the metabolic flow from the main phenylpropanoid pathway into the SA biosynthetic branch. Under these conditions, in vivo labeling and radioisotope dilution experiments with [(14)C]trans-cinnamic acid as precursor clearly indicated that the free form of BA produced in elicited tobacco cells is not the major precursor of SA biosynthesis. The main conjugated form of BA accumulating after elicitation of tobacco cells was identified for the first time as benzoyl-glucose. Our data point to the likely role of conjugated forms of BA in SA biosynthesis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge