English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular and Cellular Biology 2009-Aug

Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1alpha stabilization by glucose-dependent generation of reactive oxygen species.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Sunil Sudarshan
Carole Sourbier
Hye-Sik Kong
Karen Block
Vladimir A Valera Romero
Youfeng Yang
Cynthia Galindo
Mehdi Mollapour
Bradley Scroggins
Norman Goode

Keywords

Abstract

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an inherited cancer syndrome linked to biallelic inactivation of the gene encoding the tricarboxylic acid cycle enzyme fumarate hydratase (FH). Individuals with HLRCC are at risk to develop cutaneous and uterine leiomyomas and an aggressive form of kidney cancer. Pseudohypoxic drive-the aberrant activation of cellular hypoxia response pathways despite normal oxygen tension-is considered to be a likely mechanism underlying the etiology of this tumor. Pseudohypoxia requires the oxygen-independent stabilization of the alpha subunit of the hypoxia-inducible transcription factor (HIF-1alpha). Under normoxic conditions, proline hydroxylation of HIF-1alpha permits VHL recognition and subsequent targeting for proteasomal degradation. Here, we demonstrate that inactivating mutations of FH in an HLRCC-derived cell line result in glucose-mediated generation of cellular reactive oxygen species (ROS) and ROS-dependent HIF-1alpha stabilization. Additionally, we demonstrate that stable knockdown of FH in immortalized renal epithelial cells results in ROS-dependent HIF-1alpha stabilization. These data reveal that the obligate glycolytic switch present in HLRCC is critical to HIF stabilization via ROS generation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge