English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2001-Jan

Functional characterisation of Nicotiana tabacum xyloglucan endotransglycosylase (NtXET-1): generation of transgenic tobacco plants and changes in cell wall xyloglucan.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
K Herbers
E P Lorences
C Barrachina
U Sonnewald

Keywords

Abstract

To study the function of xyloglucan endotransglycosylase (XET) in vivo we isolated, a tomato (Lycopersicon esculentum Mill.) XET cDNA (GenBank AA824986) from the homologous tobacco (Nicotiana tabacum L.) clone named NtXET-1 (Accession no. D86730). The expression pattern revealed highest levels of NtXET-1 mRNA in organs highly enriched in vascular tissue. The levels of NtXET-1 mRNA decreased in midribs with increasing age of leaves. Increasing leaf age was correlated with an increase in the average molecular weight (MW) of xyloglucan (XG) and a decrease in the relative growth rates of leaves. Transgenic tobacco plants with reduced levels of XET activity were created to further study the biochemical consequences of reduced levels of NtXET-1 expression. In two independent lines, total XET activity could be reduced by 56% and 37%, respectively, in midribs of tobacco plants transformed with an antisense construct. The decreased activity led to an increase in the average MW of XG by at least 20%. These two lines of evidence argue for NtXET-1 being involved in the incorporation of small XG molecules into the cell wall by transglycosylation. Reducing the incorporation of small XG molecules will result in a shift towards a higher average MW. The observed reduction in NtXET-1 expression and increase in the MW of XG in older leaves might be associated with strengthening of cell walls by reduced turnover and hydrolysis of XG.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge