English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Cellular Physiology 1988-May

Functional studies of newly synthesized benzoic acid derivatives: identification of highly potent retinoid-like activity.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M Sato
K Shudo
A Hiragun

Keywords

Abstract

Three newly synthesized benzoic acid derivatives (terephthalic acid anilides, chalcone carboxylic acid, and azobenzene carboxylic acid), with a certain structural similarity to retinoic acid, were examined for their retinoid-like bioactivity and their capacity to bind to cellular retinoid binding proteins. Two in vitro systems were used to evaluate their retinoid-like bioactivity: inhibition of adipose conversion of ST 13 murine preadipose cells and growth promotion of murine sarcoma virus (MSV)-transformed 3T3 cells in serum-free culture. All three compounds tested inhibited ST 13 adipose conversion at nanomolar concentrations in a manner similar to classical retinoids such as retinoic acid. The growth-stimulating activity of these compounds on MSV-transformed 3T3 cells was one to two orders of magnitude greater than that of retinoic acid. Simultaneous treatment with these compounds and retinoic acid produced only a barely detectable additive effect, suggesting a common mechanism of action, whereas unrelated mitogens, thrombin, and insulin worked synergistically in combination with retinoic acid. None of the compounds competed with retinol for binding to cellular retinol binding protein. However, two of the three competed with retinoic acid for binding to cellular retinoic acid binding protein. This study provides evidence that the newly synthesized compounds should be included among the retinoids and that their strong biological activity will undoubtedly contribute to the biological and medical application of retinoids.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge