English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Proceedings of the National Academy of Sciences of the United States of America 2008-Nov

GDP-mannose pyrophosphorylase is a genetic determinant of ammonium sensitivity in Arabidopsis thaliana.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Cheng Qin
Weiqiang Qian
Wenfeng Wang
Yue Wu
Chunmei Yu
Xinhang Jiang
Daowen Wang
Ping Wu

Keywords

Abstract

Higher plant species differ widely in their growth responses to ammonium (NH(4)(+)). However, the molecular genetic mechanisms underlying NH(4)(+) sensitivity in plants remain unknown. Here, we report that mutations in the Arabidopsis gene encoding GDP-mannose pyrophosphorylase (GMPase) essential for synthesizing GDP-mannose confer hypersensitivity to NH(4)(+). The in planta activities of WT and mutant GMPases all were inhibited by NH(4)(+), but the magnitude of the inhibition was significantly larger in the mutant. Despite the involvement of GDP-mannose in both l-ascorbic acid (AsA) and N-glycoprotein biosynthesis, defective protein glycosylation in the roots, rather than decreased AsA content, was linked to the hypersensitivity of GMPase mutants to NH(4)(+). We conclude that NH(4)(+) inhibits GMPase activity and that the level of GMPase activity regulates Arabidopsis sensitivity to NH(4)(+). Further analysis showed that defective N-glycosylation of proteins, unfolded protein response, and cell death in the roots are likely important downstream molecular events involved in the growth inhibition of Arabidopsis by NH(4)(+).

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge